Epitope Discovery with Phylogenetic Hidden Markov Models
نویسندگان
چکیده
منابع مشابه
Epitope Discovery with Phylogenetic Hidden Markov Models
Existing methods for the prediction of immunologically active T-cell epitopes are based on the amino acid sequence or structure of pathogen proteins. Additional information regarding the locations of epitopes may be acquired by considering the evolution of viruses in hosts with different immune backgrounds. In particular, immune-dependent evolutionary patterns at sites within or near T-cell epi...
متن کاملPhylogenetic Hidden Markov Models
Phylogenetic hidden Markov models, or phylo-HMMs, are probabilistic models that consider not only the way substitutions occur through evolutionary history at each site of a genome, but also the way this process changes from one site to the next. By treating molecular evolution as a combination of two Markov processes—one that operates in the dimension of space (along a genome) and one that oper...
متن کاملExpectation Maximization for Combined Phylogenetic and Hidden Markov Models
An expectation maximization (EM) algorithm is derived to estimate the parameters of a phylogenetic model, a probabilistic model of molecular evolution that considers the phylogeny, or evolutionary tree, by which a set of present-day organisms are related. The EM algorithm is then extended for use with a combined phylogenetic and hidden Markov model. An efficient method is also shown for computi...
متن کاملLearning Hierarchical Hidden Markov Models for Video Structure Discovery
Structure elements in a time sequence are repetitive segments that bear consistent deterministic or stochastic characteristics. While most existing work in detecting structures follow a supervised paradigm, we propose a fully unsupervised statistical solution in this paper. We present a unified approach to structure discovery from long video sequences as simultaneously finding the statistical d...
متن کاملLogical Hidden Markov Models
Logical hidden Markov models (LOHMMs) upgrade traditional hidden Markov models to deal with sequences of structured symbols in the form of logical atoms, rather than flat characters. This note formally introduces LOHMMs and presents solutions to the three central inference problems for LOHMMs: evaluation, most likely hidden state sequence and parameter estimation. The resulting representation a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Molecular Biology and Evolution
سال: 2010
ISSN: 0737-4038,1537-1719
DOI: 10.1093/molbev/msq008